Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
AIMS Microbiol ; 9(3): 419-430, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649803

RESUMO

Bacillus cereus is reported as a common cause of toxin-induced food poisoning and of contamination in pasteurized human milk donations. As various toxins can be produced by B. cereus, the aim of this work was first to investigate the toxigenic potential and profiles of 63 B. cereus isolates from Amiens Picardie human milk bank. A comparison to the toxigenic profiles of 27 environmental B. cereus isolates harvested in the hospital in which this human milk bank is situated was performed. Toxin gene prevalences were the highest for nhe (ABC) and entFM followed by cytK and hbl(ACD). A 27% prevalence was found for ces human milk isolates, which is higher than previous works reporting on pasteurized milk and dairy products. No significant differences could be found between human milk and environmental isolates regarding toxin gene prevalences and/or toxin gene profiles. The second aim was to establish whether a B. cereus cross-contamination between human milk and the environment could occur. This was achieved with the help of Fourrier-transform infra-red spectroscopy which enabled the discrimination of 2 main clusters of 11 and 8 isolates, each containing human milk and Amiens Picardie human milk bank environmental isolates. For these two clusters, the time sequence showed that human milk isolates were the first to occur and might have contaminated the milk bank environment as well as other human milk donations. Routinely used on B. cereus isolates, Fourrier-transform infra-red spectroscopy could help in rapidly detecting such clusters and in limiting the spread of a B. cereus strain that might generate rejection of pasteurized donation by the human milk bank.

2.
Harmful Algae ; 31: 9-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28040116

RESUMO

According to our previous results the gastropod Lymnaea stagnalis exposed to MC-producing cyanobacteria accumulates microcystins (MCs) both as free and covalently bound forms in its tissues, therefore representing a potential risk of MC transfer through the food web. This study demonstrates in a laboratory experiment the transfer of free and bound MCs from L. stagnalis intoxicated by MC-producing Planktothrix agardhii ingestion to the fish Gasterosteus aculeatus. Fish were fed during five days with digestive glands of L. stagnalis containing various concentrations of free and bound MCs, then with toxin-free digestive glands during a 5-day depuration period. MC accumulation was measured in gastropod digestive gland and in various fish organs (liver, muscle, kidney, and gills). The impact on fish was evaluated through detoxification enzyme (glutathion-S-transferase, glutathion peroxydase and superoxyde dismutase) activities, hepatic histopathology, and modifications in gill ventilation, feeding and locomotion. G. aculeatus ingestion rate was similar with intoxicated and toxin-free diet. Fish accumulated MCs (up to 3.96±0.14µgg-1DW) in all organs and in decreasing order in liver, muscle, kidney and gills. Hepatic histopathology was moderate. Glutathion peroxydase was activated in gills during intoxication suggesting a slight reactive oxygen species production, but without any impact on gill ventilation. Intoxication via ingestion of MC-intoxicated snails impacted fish locomotion. Intoxicated fish remained significantly less mobile than controls during the intoxication period possibly due to a lower health condition, whereas they showed a greater mobility during the depuration period that might be related to an acute foraging for food. During depuration, MC elimination was total in gills and kidney, but partial in liver and muscle. Our results assess the MC transfer from gastropods to fish and the potential risk induced by bound MCs in the food web.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...